

Android REST Client Application to View, Collect, and

Exploit Video and Image Data

by Somiya Metu and Robert P. Winkler

ARL-TR-6639 September 2013

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6639 September 2013

Android REST Client Application to View, Collect, and

Exploit Video and Image Data

Somiya Metu and Robert P. Winkler

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

 ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2013

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

January to July 2013

4. TITLE AND SUBTITLE

Android REST Client Application to View, Collect, and Exploit Video and

Image Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Somiya Metu and Robert P. Winkler

5d. PROJECT NUMBER

R0006163.9

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: ARL-CII-B

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6639

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

As part of the U.S. Army Research Laboratory’s image processing testbed, a Representational State Transfer (REST) Web

service framework for recording, viewing, and processing video and images has been developed. Client applications are

needed to collect data and invoke the Web services. This report describes an Android based client application for collecting,

viewing, and exploiting both video and imagery data and initiating image processing algorithms for contrast enhancement,

deblurring, and super resolution.

15. SUBJECT TERMS

Android M-JPEG video stream, Android screen annotation, Android REST client

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

30

19a. NAME OF RESPONSIBLE PERSON

Somiya Metu
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-1398
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Listings iv

1. Introduction 1

2. Development Environment 1

3. Application Design 1

3.1 The Look and Feel ...1

3.2 Video Manipulation ...4

3.2.1 Displaying Video ...4

3.2.2 Pausing Video ..5

3.2.3 Fast Forward and Rewind ..5

3.3 Image Processing ...6

3.3.1 Annotation ...7

3.3.2 Super Resolution ..11

3.3.3 Contrast and Deblur ...16

4. Conclusion and Future Work 21

5. References 22

Distribution List 23

 iv

List of Figures

Figure 1. Main screen. ..2

Figure 2. Camera list. ...3

Figure 3. Live video display. ..3

Figure 4. Display video sequence diagram. ..4

Figure 5. Pause video sequence diagram. ...5

Figure 6. Fast-forward/rewind sequence diagram. ...6

Figure 7. Image processing options. ...7

Figure 8. Annotate options. ...8

Figure 9. Annotate sequence diagram. ..9

Figure 10. Annotated image. ...10

Figure 11. Selected area for super resolution. ...12

Figure 12. Super-resolved result. ..15

Figure 13. Super resolution sequence diagram. ..16

Figure 14. Contrasted image. ..18

Figure 15. Deblurred image. ...19

Figure 16. Contrast/deblur sequence diagram. ...20

List of Listings

Listing 1. XML POST for saving annotated image. ...11

Listing 2. XML image POST. ...13

Listing 3. XML collection POST. ...13

Listing 4. XML super resolution POST. ...14

Listing 5. XML contrast POST. ..17

Listing 6. XML Deblur POST. ...17

 1

1. Introduction

As part of the U.S. Army Research Laboratory’s image processing testbed, we developed a

Representational State Transfer (REST) Web service framework for recording, viewing, and

processing video and images from cameras situated throughout the Adelphi Laboratory Campus

(Winkler and Schlesiger, 2013). While the Web services provide the processing and recording

capabilities, client applications are required to collect the data and initiate the processing stages.

In this report, we describe one such Android application for collecting, viewing, and exploiting

both video and imagery data and initiating image processing algorithms for contrast

enhancement, deblurring, and super resolution.

2. Development Environment

Google’s Android is an open-source software stack intended for mobile devices such as cell

phones and tablets. The development environment consists of a software development kit (SDK)

written for the Java programming language, and a series of tools integrated with the Eclipse

integrated development environment (IDE) for development and debugging. The Android SDK

and the associated tools are freely available from Google at http://developer.Android.com. The

version used for this development was SDK Tools Revision 10 with the Android Development

Tools (ADT) Eclipse plug-in for Eclipse Indigo. The target platform was Android 4.0.3. The

Galaxy Nexus phone was used for testing.

Additionally, the Android’s Camera application programming interface (API) was used, which

provides connectivity to the built-in camera.

3. Application Design

3.1 The Look and Feel

Video Viewer is the Android activity that presents the user interface (UI) for the Android client

that communicates with two Web services, namely, the Image Processing Web Service and the

Digital Video Recorder (DVR) Web Service. The activity presents the UI through a number of

widgets organized in an Android layout. The widgets and layouts are specified in an extensible

markup language (XML) format and this information is stored in the application’s resource

folder.

 2

The main screen provides configuration information for the Web services and a Start button to

launch the application with default configurations for the Web services, as shown in figure 1. It

also provides an option to change the current configuration by specifying the URLs of the Web

services.

Figure 1. Main screen.

Once the application is launched, a list of cameras available via the DVR Web Service is

displayed, as shown in figure 2

 3

Figure 2. Camera list.

Once a camera selection is made, a live-motion JPEG video from the selected camera is

displayed, as shown in figure 3. This video has fast-forward, rewind, and pause capabilities. The

scrollbar also enables the user to go back to a specific frame/image. The camera list also contains

a “Local Camera”. This represents the phone’s internal camera. By choosing this, the phone’s

internal built-in camera and its internal image gallery are made available.

Figure 3. Live video display.

 4

3.2 Video Manipulation

3.2.1 Displaying Video

In order to stream a motion JPEG video to an Android device, we have used an open-source Java

class from Google code. To start the video display, MainActivity, which is a window for placing

UI elements, requests a camera list from the DVR Web Service. Once the DVR Web Service

responds back with the camera list, a camera can be selected by the user from the list. The Main

Activity then initializes a VideoViewer object by invoking the start method and providing the

URL of the DVR Web Service as one of the parameters. The VideoViewer object then returns the

current frame back to the Main Activity where it is converted back to a Bitmap object and

displayed on the canvas. The Main Activity provides the current frame number to the Scrollbar so

that it is positioned appropriately to reflect the progress of the video display. This process

continues repeatedly, as depicted in the unified modeling language (UML) sequence diagram in

figure 4.

Video Canvas Scroll Bar Main Activity DVR Web Service CameraList VideoViewer

getCameraList()

cameraList

start()

frame

selectCamera()

selectedCamera

bitmap

setCurrentProgress()

Loop

Figure 4. Display video sequence diagram.

 5

3.2.2 Pausing Video

To pause the video, the visibility of the VideoViewer object is set to “GONE”. This means that

the object becomes invisible and does not take up any space for layout. The frame that was

paused is converted to a bitmap object and supplied to a newly instantiated ImageView. The

bitmap is then used to set the content of the ImageView. The ImageView then renders its content

by invoking the draw method. This process continues repeatedly, as depicted in the UML

sequence diagram in figure 5.

VideoCanvas ImageViewVideoViewer

setVisibility(GONE)

setVisibility(VISIBLE)

currentBitmap

setImageBitmap(currentBitmap)

draw()

Figure 5. Pause video sequence diagram.

3.2.3 Fast Forward and Rewind

The Main Activity destroys the current VideoViewer object by invoking the stop feed method.

Following this, it initializes a new VideoViewer object by invoking the start method. It provides

the frame number, fast-forward, or rewind speed along with the URL of the DVR Web Service

as its parameters. The frame numbers indicates the frame at which the video has to be fast-

forwarded or rewound. The VideoViewer object then returns the current frame back to the Main

 6

Activity, where it is converted back to a bitmap object and eventually displayed on the canvas.

The Main Activity provides the current frame number to the scrollbar so that it is positioned

appropriately to reflect the progress of the video display. This process continues repeatedly, as

depicted in the UML sequence diagram in figure 6.

Video Canvas Scroll Bar Main Activity VideoViewer

start(frameNumber,ffSpeed)

currentFrame

bitmap

stopFeed()

setCurrentProgress()

Figure 6. Fast-forward/rewind sequence diagram.

3.3 Image Processing

The live streaming video that is displayed on the device’s screen can be paused to initiate image

processing tasks on the paused image/frame. The Image Processing Web Service is invoked to

perform the image processing tasks on the paused image/frame. The image processing tasks that

are currently available are text and graphical image annotation, contrast enhancement, image

deblurring, and super resolution. The UI menu for the image processing tasks is shown in

figure 7. These image processing tasks are described below.

 7

Figure 7. Image processing options.

3.3.1 Annotation

The image can be annotated by drawing on the image or writing text on the image. The

annotation feature can be invoked by clicking on the Annotate menu. This opens a list of sub-

menu items related to annotation, as shown in figure 8.

 8

Figure 8. Annotate options.

The annotation feature makes use of an AnnotateImageView class. This class extends the

ImageView class and implements the “OnTouch” event and facilitates drawing based on touch. It

contains a private class namely Point, which stores the coordinate information that is generated

by a “Touch” event. Point also stores the text information that the user writes on the image. The

AnnotateImageView gets instantiated when the Annotation option is selected from the menu. The

visibility of the VideoViewer object is set to “GONE”. This implies that the object becomes

invisible and does not take up any space for layout purposes. The background for

AnnotateImageView is set to the current bitmap object. This view keeps track of all the

coordinates on the screen that were touched by the user in a list containing Point objects. Based

on the stored coordinates in the Point objects, the drawing is rendered. If the user chooses to save

the annotation, the user can save it by choosing Save Annotation from menu. This will save the

 9

image and the annotations in InkML format. This process is depicted in the UML sequence

diagram shown in figure 9.

VideoCanvas ImageViewVideoViewer

setVisibility(GONE)

setVisibility(GONE)

draw()

AnnotateImageView

currentBitmap()

setImageBitmap(currentBitmap)

Image Processing WebService

uploadAnnotatedImage()

AnnotatedImageURI

Figure 9. Annotate sequence diagram.

3.3.1.1 Graphical Annotation

The Draw option facilitates free-flow drawing on the image as shown in figure 10. The list of

Point objects is used to render the drawing.

3.3.1.2 Textual Annotation

The Write option allows users to write text on the image. The user can write the text using the

phone soft-keyboard, which appears on the screen when “write” is pressed. Once the user writes

the desired text using the keyboard, the “Done” button is pressed. This hides the soft keyboard.

Now the text can be dropped on any part of the image just by touching the screen on the area

where the user would like the text to appear.

 10

Figure 10. Annotated image.

3.3.1.3 Erasing

The Clear option clears any type of annotation/markings present on the image. The list of Point

objects containing tracked coordinate values is cleared and the list becomes empty.

3.3.1.4 Storing

The Save option saves the annotated image and then publishes the annotated image to the Image

Processing Web Service. It calls the saveView method to convert the bitmap and annotation

associated with it to a JPEG file, which gets stored in the device’s internal storage. Following

this, the createannotationElement method is invoked. This method converts the stored annotation

information into InkML format. Once the annotation information is coded in InkML language,

the uploadAnnotatedImage method is invoked. This method is responsible for uploading the

image in base64 notation together with its annotation information coded in InkML format. In this

method, an asynchronous task is instantiated namely postServerTask. This task takes the uniform

resource identifier (URI) of the image to be posted and an InkML string, which is a metadata

object including an annotation element. An example metadata is shown in listing 1.

 11

<?xml version="1.0" encoding="utf-8"?>

<Metadata URI="http://mule01.lsn.arl:8080/ARLImageProcessing/images/4814cbf6-e6e1-4397-
a592-b87149197d10" xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <MediaType>image/png</MediaType>
 <DateCreated>2013-05-06T15:06:44.9048581-04:00</DateCreated>
 <LastModified>2013-05-06T15:06:44.9048581-04:00</LastModified>
 <Annotations>
 <ink xmlns="http://www.w3.org/2003/InkML">
 <definitions>
 <brush xml:id="B1">
 <brushProperty name="width" value="4.0"/>
 <brushProperty name="height" value="4.0"/>
 <brushProperty name="color" value="#FF000000"/>
 <brushProperty name="tip" value="ellipse"/>
 </brush>
 </definitions>
 <trace brushRef="B1">
 485.23962 307.07352, 483.91577 309.55798, 483.23453 318.43945,
 484.54724 331.3474, 492.75012 345.29355, 503.93808 351.06744,
 514.09503 352.63522, 534.7229 350.1277, 545.30304 345.49985,
 549.3976 340.78232, 554.35284 331.53326, 552.2034 324.1612,
 543.755 312.2683, 531.7832 303.72626, 508.53308 296.96783,
 491.88242 298.66687, 487.24475 303.32874
 </trace>
 </ink>
 </Annotations>
 <Media>...image data omitted for brevity...</Media>
</Metadata>

Listing 1. XML POST for saving annotated image.

3.3.1.5 Leaving Annotation Mode

The Exit option exits from the Annotation mode.

3.3.2 Super Resolution

Super resolution (2, 3) of the paused image/frame is initiated by selecting the Super Resolution

option from the menu. In order to super resolve a portion of the image, the user can draw over

the image to mark an area of interest that needs to be super resolved. The layout for super

resolution is specified in the layout folder under the application’s resource folder (called res). It

uses a frame layout nested inside a relative layout. Inside the frame layout is one single custom

ImageView, namely, SuperResolverImageView, which has been defined by extending the

ImageView class from the Android API. We implement a touch event for the

SuperResolverImageView, which facilitates the user to draw a rectangle in order to select a part

of the image for super resolution. Figure 11 depicts this selection.

 12

Figure 11. Selected area for super resolution.

To super resolve the image, the current frame, as well as several frames following the current

frame, are collected as required by the Image Processing Web Service. The preferred number of

frames collected to pass on to the Web Service is five. To achieve this, an asynchronous task

BitmapCollection is invoked. Once the task is complete, it returns an array list containing bitmap

objects. After the list is created and the area of the image to be super resolved is determined by

the user, an asynchronous task SuperResolveAsyncTask is initiated.

The execute method is called from the asynchronous task instance. This method runs on the main

UI thread, which triggers a worker thread. Before handing the control to the worker thread,

onPreExecute method is called. In this method, we show the dialog indicating that the super

resolution has been initiated. Following the onPreExecute method, the doInBackground method

is called where the bulk of the work is performed. The array list of bitmaps that was collected

earlier is traversed one by one to be uploaded to the Image Processing Web Service. To achieve

this, the uploadImage method is invoked to upload the image data one by one. In this method,

the bitmap data are converted into a base64 string. An XML string encapsulating the media and

header information is created. The XML string conforms to the metadata.xsd schema specified

by the REST Web Service. This schema represents the metadata associated with an image file.

The elements in the XML string that get set are “MediaType” and “Media”.

An example of the Metadata is shown in listing 2.

 13

<?xml version="1.0" encoding="utf-8"?>
<Metadata URI="http://mule01.lsn.arl:8080/ARLImageProcessing/images/21446696-ad39-
4a7d-abbc-042f2381c917" xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<MediaType>image/jpeg</MediaType>
<DateCreated>2013-05-02T15:19:18.310355804:00</DateCreated>
<LastModified>2013-05-02T15:19:18.3103558-04:00</LastModified>
<Media>…image data omitted for brevity… </Media>

</Metadata>

Listing 2. XML image POST.

Following the creation of the metadata object listed above, the postToServer method is invoked.

This method takes two parameters. The first one is the URI of the image to be posted and the

second one is the metadata object. In this method, an HTTP client and HTTP post instance is

created. The HTTP post object is encoded with header information and metadata. The HTTP post

then gets executed using the HTTP client created before. In response to the HTTP request, the

Image Processing Web Service sends back the URI of the uploaded image. This URI is then

saved to an array list, which eventually contains the URIs of all the frames that have been

successfully uploaded. The uploadCollection method is then invoked. This method is responsible

for creating an XML string that conforms to a schema named collection.xsd. This schema is for a

collection of images/frames as specified by the REST Web Service. The elements in the XML

string that get set are “Title” and “ImageURI”. The XML string contains all the header

information and the URI of all the uploaded frames/images on the Web Service.

An example of collection metadata is shown in listing 3.

<?xml version="1.0" encoding="utf-8"?>
<Collection URI="http://mule01.lsn.arl:8080/ARLImageProcessing/collections/f51413f5-badc-
47bb-a3f6-89076185964f" xmlns="http://arl.army.mil/ARLImageProcessing/Collection.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <Title>Camera frames : 1367522366504 </Title>
 <DateCreated>2013-05-02T15:19:26.8322927-04:00</DateCreated>
 <ImageURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/21446696-ad39-4a7d-
abbc042f2381c917</ImageURI>
 <ImageURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/aaaf6336-1144-4809-b23c-
242a3018ccf0</ImageURI>
 <ImageURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/3c615f22-b922-437b-ae31-
4e4b15c39fd6</ImageURI>
 <ImageURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/3f5557e3-7c8f-4e81-98c5-
27cd415229c4</ImageURI>
 <ImageURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/4815b519-3efe-497d-aead-
3ef4902cf7d8</ImageURI>
</Collection>

Listing 3. XML collection POST.

 14

Once the Collection object is formulated, then the postToServer method is invoked. This method

takes the URI of the collection to be posted and the XML string representing the collection. This

method returns the URI of the uploaded Collection object. Following this, the superResolve

method is invoked by passing the URI of the uploaded Collection object. In this method, an

XML string conforming to the metadata.xsd schema is created. The elements of the schema that

get set are “ParentURI”, “Chip”, and “SuperResolutionParameters”. The value of the ParentURI

element points to URI of the uploaded collection. The value of the chip represents the bounding

box of the selected area. The SuperResolutionParameters, as the name suggests, holds the values

for the parameters for super resolution. An example of the metadata is shown in listing 4.

<Metadata
URI="http://mule01.lsn.arl:8080/ARLImageProcessing/collections/superresolved/fcf0dfc8-
8137-458d-956a-eb539080de63">
 <MediaType xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd">
 image/png
 </MediaType>
 <DateCreated xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd">2013-05-
02T08:34:21.7512257-04:00</DateCreated>
 <LastModified xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd">2013-05-
02T08:34:21.7512257-04:00</LastModified>
 <ParentURIxmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd">
 http://mule01.lsn.arl:8080/ARLImageProcessing/collections/966085ab-4c70-4bec-b8cf-
06f576c47230</ParentURI>
 <Chip LowerRightX="346" LowerRightY="255" UpperLeftX="278" UpperLeftY="208"
xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd"/>
 <SuperResolutionParameters Align="true" Inset="5" Quality="10" Speed="0.55"
xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd"/></Metadata>

Listing 4. XML super resolution POST.

Once the XML string is formulated, the postToServer method is invoked by passing the URI for

the Super Resolution service and the XML string. This method returns the URI of the super-

resolved image.

The getResult method is then invoked by passing the URI of the super-resolved image.

In this method, the HTTPGet instance is created using the URI of the super-resolved image

residing on the Image Processing Web Service. A DefaultHTTPClient instance is created and

then HTTPGet is executed using the HTTP client. An HTTP response is then generated by the

client, which is processed to obtain the super-resolved image in the form of a base64 string. The

getResult method then returns the super-resolved image as a base64 string. This string is then

converted to bitmap format. Following this, the runOnUiThread method is invoked by passing a

runnable action as a parameter. The runnable action in this case is UpdateImage. The

UpdateImage action runs on the main UI thread. It sets the SuperResolverImageView to the

 15

super-resolved image in bitmap format. The super-resolved image is then visible on the screen as

shown in figure 12.

Figure 12. Super-resolved result.

The UML sequence diagram in figure 13 depicts the super-resolution process.

 16

MainActivity

execute

BitmapCollectionTask

BitmapCollection

VideoCanvas

Bitmap

SuperResolveAsyncTAsk

execute

DVR Webservice

uploadBitmapCollection

uploadedCollectionURL

superResolvedURL

getSuperResolvedImage (superResolvedURL)

SuperResolvedImage

SuperResolvedBitmap

get()

superResolve(uploadedCollectionURL)

Figure 13. Super resolution sequence diagram.

3.3.3 Contrast and Deblur

The Contrast (4) or Deblur (5) image task is applied to the paused image/frame by clicking on

the Contrast or Deblur option from the menu, respectively. This invokes the

saveFrameForProcessing method. This method saves the current frame to the device’s internal

storage in PNG format. The saved file is then decoded to a bitmap object. Following this, an

asynchronous task, ProcessImageAsyncTask, is initiated. The execute method is called from the

asynchronous task instance. This method runs on the main UI thread, which triggers a worker

thread. Before handing the control to the worker thread, the onPreExecute method is called. This

method passes setup values from the main UI thread to the worker thread. In this case, the dialog

indicating that the image processing has commenced is displayed. Following this, the

doInBackground method is called on the worker thread. This method is where the bulk of the

work is performed. The UploadImage method is called to load the selected image on the server.

The bitmap data are converted into a base64 string. An XML string encapsulating the media and

header information is created. The XML string conforms to the metadata.xsd schema specified

by the REST Web Service. This schema represents the metadata associated with an image file.

 17

The elements in the XML string that get set are “MediaType” and “Media”. In this method, the

image, which is in bitmap format, is encoded in base64 notation to be sent to the server.

Once the image is uploaded to the server, the server sends back a URI indicating the location of

the uploaded image on the server. Based on the user selection of Contrast or Deblur the

corresponding method, requestContrast or requestDeblur method, is invoked. In these methods,

an XML string conforming to the metadata.xsd schema is generated. The XML string contains

parameter values for the Contrast/Deblur Service. An example of the metadata with contrast

parameters is shown in listing 5.

<?xml version="1.0" encoding="utf-8"?>
<Metadata
URI="http://mule01.lsn.arl:8080/ARLImageProcessing/images/contrastenhanced/6b6217bb-
5832-4b29-9f56-60ac5db464ae"
xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<MediaType>image/png</MediaType><DateCreated>2013-05-02T15:26:06.6286398-
04:00</DateCreated><LastModified>2013-05-02T15:26:06.6286398-
04:00</LastModified><ParentURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/0
f6793a0-6a5e-4402-9e17-9a8039e12cc1</ParentURI><ContrastEnhancementParameters
PercentageLow="0.5" PercentageHigh="0.002"/><Media>image data omitted for brevity
</Media>
</Metadata>

Listing 5. XML contrast POST.

An example of the metadata with deblur parameters is shown in listing 6.

<?xml version="1.0" encoding="utf-8"?><Metadata
URI="http://mule01.lsn.arl:8080/ARLImageProcessing/images/deblurred/2f9db5d0-e41c-
4341-a941-e1aa563ba495" xmlns="http://arl.army.mil/ARLImageProcessing/Metadata.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<MediaType>image/png</MediaType>
<DateCreated>2013-05-02T15:26:11.1294958-04:00</DateCreated>
<LastModified>2013-05-02T15:26:24.466145-04:00</LastModified>
<ParentURI>http://mule01.lsn.arl:8080/ARLImageProcessing/images/contrastenhanced/6b62
17bb-5832-4b29-9f56-60ac5db464ae</ParentURI><DeblurParameters Alpha="0.3" MG="20"/>
<Media>… image data omitted for brevity…</Media>
</Metadata>

Listing 6. XML Deblur POST.

Once the XML string is formulated, the postToServer method is invoked, which takes the URI of

the Contrast or Deblur service and the XML string representing the metadata.

 18

An HTTP request is made to the REST Web Service for contrast/deblur. An HTTP client and

HTTP POST instance is instantiated. The HTTP POST data are encoded with the XML string

and is executed using the HTTP client. In response to the HTTP request, the Image Processing

Web Service sends back the processed image in base64 notation, which is then converted back in

bitmap format. The SuperResolverImageView is then made visible on the screen and its content

is set to the resulting bitmap displaying the contrasted/deblurred image. Figures 14 and 15 depict

the contrasted and deblurred image, respectively.

Figure 14. Contrasted image.

 19

Figure 15. Deblurred image.

The sequence diagram shown in figure 16 depicts the contrast/deblur process.

 20

MainActivity ProcessImageAsyncTAsk DVR WebserviceVideoCanvas

currentBitmap

execute()

uploadImage()

uploadedImageURL

requestContrast (uploadedImageUR)

contrastedImage

requestDeblur (uploadedImageURI)

de blurredImage

get()

processedBitmap

alt

Figure 16. Contrast/deblur sequence diagram.

 21

4. Conclusion and Future Work

In this report, we have described an Android application for collecting, viewing, manipulating,

and exploiting video and image data. The application initiates image processing algorithms for

contrast enhancement, deblurring, and super resolving these data by communicating with the

REST Web Services that form the foundation of our image processing testbed. As more image

processing algorithms are added to the Android testbed, this application will be extended to

invoke those algorithms.

 22

5. References

1. Winkler, R. P.; Schlesiger, C. Image Processing REST Web Services; ARL-TR-6393; U.S.

Army Research Laboratory: Adelphi, MD March 2013.

2. Young, S. S.; Driggers, R. G. Superresolution Image Reconstruction From a Sequence of

Aliased Imagery. Applied Optics 2006, 45 (21), 5073–5085.

3, Driggers, R. G.; Krapels, K. A.; Murrill, S.; Young, S. S.; Theilke, M.; Schuler, J. M.

Superresolution Performance for Undersampled Imagers. Optical Engineering 2005, 44 (01).

4. Young, S. S.; Driggers, R. G. Signal Processing and Performance Analysis for Imaging

Systems. Artech House, 2008.

5. Young, S. S.; Driggers, R. G.; Teaney, Brian P.; Jacobs, Eddie L. Adaptive Deblurring of

Noisy Images. Applied Optics 2007, 46 (5), 744–752.

 23

1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 1 GOVT PRINTG OFC

 (PDF) A MALHORTA

 1 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 IMAL HRA

 1 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 3 DIRECTOR

 (PDS) US ARMY RESEARCH LAB

 RDRL-CII-B

 L TOKARCIK

 R WINKLER

 S METU

 4 RDRL-CII-T

 (PDFS) S LAROCCA

 J MORGAN

 M HOLLAND

 M VANNI

 3 RDRL-CII-C

 (PDFS) M THOMAS

 M MITTRICK

 J RICHARDSON

 1 DIRECTOR

 (PDF) NATIONAL SECURITY AGENCY

 CAMT

 M MARTINDALE

 1 DIRECTOR

 (PDF) ODNI

 FLPO

 J KLAVENS

 1 DIRECTOR

 (PDF) HQDA

 ODCS, G2 CSM

 M SANCHEZ

 1 DIRECTOR

 (PDF) CERDEC

 RDER-CPM-IM

 R SCHULZE

 1 DIRECTOR

 (PDF) INSCOM

 R RICHARDSON

 24

INTENTIONALLY LEFT BLANK.

